FLEET Schools. Activity 4: Potential energy

Learning intentions

Students will learn what potential energy is and how to calculate how much potential energy something has – and how much potential work you can do with that energy.

Materials

Imagination - and possibly the desire to get out a skateboard and design an experiment to • test the math.

Teacher Notes	Teaching Notes: Running the activity
This Activity sheet contains a mix of activities with	Method
one activity targeted at year 7-9, depending on	Question 1. Before applying the math, get
their ability.	students to develop a hypothesis
	(prediction) for the following question:
Forms of energy	
The two main forms of energy are potential and	Assume the two skateboarders weigh the
kinetic and each have different types. Other energy	same. Does a skateboarder stationary at
forms include light, sound and thermal energy. See	the top of a high ramp have more or less
Activity 5 for an exploration of kinetic energy. For	potential gravitational energy than a
an in-depth look at light, see FLEET Schools teacher	skateboarder stationary on a lower ramp?
resource, Light: reflection, refraction, diffraction	
	Question 2. Another example is holding a
Potential energy: This is the energy associated with	heavy weight above your head. The weight
either the position of an object and the forces being	has potential gravitational energy. This is
exerted on it (e.g., a skateboarder stationary at the	potentially dangerous, but if you want to
top of a ramp where the force acting on the	express your concern and sound smart (or
skateboarder is gravity), or its structure (e.g., the	annoying) you could tell the person holding
chemical bonds in different molecules). The many	the weight above their head that you are
types of potential energy include gravitational,	worried about the potential gravitational
chemical and elastic. Each can be defined in	energy above them transforming into
different ways. Collectively, however, potential	kinetic energy (more about transfer of
energy represents the potential that something has	energy later).
to do work.	
	What could you suggest to the person
The skateboarder positioned at the top of the ramp	holding the weight above their head to
(stationary) has potential gravitational energy.	reduce the potential gravitational energy
When they lean forward, however, and start	and the risk of serious injury?
hurtling down the ramp, that potential energy is	
transformed into kinetic energy – movement.	Test your answer to the above questions
	with some math.

Question 1. Answer (non-math version): The higher the ramp they start from, the more potential gravitational energy a skateboarder will have, and therefore the more kinetic energy they have once they start moving downward.	Question 3. We can calculate the potential gravitational energy of someone or something if we know the force of gravity, its mass and its height above the ground. Here we are talking about skateboarders at the top of a 10 metre ramp. We weigh the
Question 2. What could you suggest to the person holding the weight above their head to reduce the gravitational potential energy?	skateboarders and they weigh 70kg. We know the force of gravity for our purposes is 10 m/sec ²
Answer: lower the weight so that it is closer to your head, or even better place it on the ground. Alternatively, they could reduce the mass of the weight.	Calculate the potential energy of the skateboarder at the top of the ramp?
Math: Potential energy (PE)= Gravitational force × height.	What if there was a second skateboarder hanging at the top of the 10 metre ramp that weighed 50kg? Which skateboarder has the greatest potential energy? Use the
And the units for energy = Joules	mathematical relationship to work it out.
Question 3. Skateboarder potential energy = Gravitational force × height We know the height of the ramp is 10 metres The gravitational force = mass × gravity, and gravity we know on Earth =9.8 metres / s ² – or how fast you fall.	What if the skateboarders took their ramp to the moon where there is less gravity (gravitational force is lower)? Compared to being on their Earth ramp, would they have more or less potential energy at the top of their ramp when on the moon?
[Note: make sure you have your units correct: where m is the mass in kilograms, g is the acceleration due to gravity (9.8 m / s^2 at the surface of the earth) and h is the height in meters.]	
For simplicity here, let us call gravity 10m / sec ²	
Therefore, we can calculate the potential energy of the skateboarder as follows Potential (gravitational) energy = Force of gravity (10m/sec ²) × mass × height	

All FLEET Schools' activities are licensed under <u>CCBY 4.0</u>: This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator, Centre of Excellence for Future Low-Energy Electronics Technologies.

Skateboarder 70kg Potential Energy (Joules) = 10m/sec ² × 70kg × 10 metres = 7000 Joules (J)	
Skateboarder 50kg Potential Energy (Joules) = 10m/sec ² × 50kg × 10 metres = 5000 Joules (J)	
And if the skateboarders took their ramp to the moon, they would have less potential energy at any position on the ramp because gravity, which applies a downward force, is reduced.	